Kernel Density Plots for climate-smart spatial plans
Source:R/splnr_plotting_climate.R
splnr_plot_climKernelDensity.Rd
Kernel Density Plots for climate-smart spatial plans
Usage
splnr_plot_climKernelDensity(
soln,
names = NA,
type = "Normal",
colorMap = "C",
legendTitle = expression(" °C y"^"-1" * ""),
xAxisLab = expression("Climate warming ( °C y"^"-1" * ")")
)
Arguments
- soln
For type "Publication": A list of
prioirtizr
solutions (e.g. solution_list = list(s1, s2)) containing a "metric" column containing the used climate metric information; For type "App": needs to be a prioritizr solution- names
A list of names of the solutions (names = c("Input 1", "Input 2"))
- type
The plotting style of the kernel density plots. Either "Publication" which gives axis information etc., or "App" which condenses the information in the plot to simplify it for stakeholders.
- colorMap
A character string indicating the color map to use (see https://ggplot2.tidyverse.org/reference/scale_viridis.html for all options)
- legendTitle
A character value for the title of the legend. Can be empty ("").
- xAxisLab
A characted value for the x Axis label depending on the climate metric input
Examples
target <- dat_species_bin %>%
dplyr::select(-"cellID") %>%
sf::st_drop_geometry() %>%
colnames() %>%
data.frame() %>%
setNames(c("feature")) %>%
dplyr::mutate(target = 0.3)
CPA <- splnr_climate_priorityAreaApproach(
featuresDF = dat_species_bin,
metricDF = dat_clim,
targetsDF = target,
direction = -1,
refugiaTarget = 1
)
out_sf <- CPA$Features %>%
dplyr::mutate(Cost_None = rep(1, 780)) %>%
dplyr::left_join(dat_clim %>%
sf::st_drop_geometry(), by = "cellID")
usedFeatures <- out_sf %>%
sf::st_drop_geometry() %>%
dplyr::select(-tidyselect::starts_with("Cost_"), -"cellID", -"metric") %>%
names()
p1 <- prioritizr::problem(out_sf, usedFeatures, "Cost_None") %>%
prioritizr::add_min_set_objective() %>%
prioritizr::add_relative_targets(CPA$Targets$target) %>%
prioritizr::add_binary_decisions() %>%
prioritizr::add_default_solver(verbose = FALSE)
dat_solnClim <- prioritizr::solve.ConservationProblem(p1)
splnr_plot_climKernelDensity(dat_solnClim, type = "Basic")
splnr_plot_climKernelDensity(soln = list(dat_solnClim), names = c("Input 1"), type = "Normal")